Dominant cataract formation in association with a vimentin assembly disrupting mutation.

نویسندگان

  • Martin Müller
  • Shomi S Bhattacharya
  • Tony Moore
  • Quincy Prescott
  • Tatjana Wedig
  • Harald Herrmann
  • Thomas M Magin
چکیده

Cataracts are characterized by an opacification of the eye lens, often caused by protein misfolding and aggregation. The intermediate filament protein vimentin, which is highly expressed in lens fiber cells and in mesenchymal tissues, is a main structural determinant in these cells forming a membrane-connected cytoskeleton. Additional functions of vimentin remain to be identified. Here, we demonstrate that a mutation in VIM causes a dominant, pulverulent cataract. We sequenced the complete human VIM gene in 90 individuals suffering from congenital cataract and found a G596A change in exon 1 in a single individual, causing the missense mutation E151K in coil 1B of vimentin. The mutant vimentin formed an aberrant vimentin cytoskeleton and increased the proteasome activity in transfected cells. Furthermore, this mutation causes a severe kinetic defect in vimentin assembly both in vitro and in vivo. Hence, in conjunction with available mouse and cell culture models, our results reveal for the first time an important functional role for vimentin in the maintenance of lens integrity. Finally, this invites novel therapy approaches for cataracts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice.

Vimentin is the main intermediate filament (IF) protein of mesenchymal cells and tissues. Unlike other IF-/- mice, vimentin-/- mice provided no evidence of an involvement of vimentin in the development of a specific disease. Therefore, we generated two transgenic mouse lines, one with a (R113C) point mutation in the IF-consensus motif in coil1A and one with the complete deletion of coil 2B of t...

متن کامل

Mutation analysis of connexin 50 gene among Iranian families with autosomal dominant cataracts

Objective(s): Childhood cataract is a genetically heterogeneous eye disorder that results in visual impairment. The aim of this study was to identify the genetic mutations of connexin 50 gene among Iranian families suffered from autosomal dominant congenital cataracts (ADCC). Materials and Methods: Families, having at least two members with bilateral familial congenital cataract, were selected ...

متن کامل

Protein-protein interactions between lens vimentin and αB-crystallin using FRET acceptor photobleaching

PURPOSE The R120G mutation of alphaB-crystallin is known to cause desmin-related myopathy, but the mechanisms underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein-protein interaction between R120G alphaB-crystallin and lens intermediate filament proteins is one of the mechanisms of congenital cataract. METHODS Protein-protein interactions...

متن کامل

Characterization of Cat-2t, a radiation-induced dominant cataract mutation in mice.

A dominant cataract mutation was detected recently among the offspring of x-ray-irradiated male mice. The mutation, which causes total lens opacity, has provisionally been designated by the gene symbol Cat-2t. In the lenses of heterozygous and homozygous Cat-2t mutants, the epithelial and fiber cells were swollen and the lens capsule was ruptured. The histologic analysis demonstrated a complete...

متن کامل

Assembly properties of dominant and recessive mutations in the small mouse neurofilament (NF-L) subunit

We have generated a set of amino- and carboxy-terminal deletions of the NF-L neurofilament gene and determined the assembly properties of the encoded subunits after coexpression with vimentin or wild-type NF-L. NF-L molecules missing greater than 30% (31 amino acids of the head) or 90% (128 amino acids of the tail) failed to incorporate into intermediate filament networks. Carboxy-terminal dele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2009